A Study of Oligoprenyl Coupling Reactions with Allylic Stannanes

Branko Radetich and E. J. Corey*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

*corey@chemistry.har*V*ard.edu*

Received July 19, 2002

ORGANIC LETTERS 2002 Vol. 4, No. 20 ³⁴⁶³-**³⁴⁶⁴**

All-*E* **or** *E***,***Z***,***E***-oligoprenols may be synthesized from allylic stannanes by reaction with prenyl aldehydes.**

We recently reported a strategically powerful method for the stereoselective synthesis of all-*E* oligoprenols by the coupling of two smaller oligoprenol fragments, as outlined in Scheme 1 (TBS $=$ *tert*-butyldimethylsilyl) for the all-*E* pentaprenol

case (5) .¹ In connection with this work we have also studied a parallel approach using organotin intermediates rather than organosilanes such as **1**. As described herein, the results

10.1021/ol026568p CCC: \$22.00 © 2002 American Chemical Society **Published on Web 08/30/2002**

obtained with allylic stannanes contrasted sharply with the allylic silane couplings exemplified by $1 + 2 \rightarrow 3$.

The synthesis of the allylic stannane **7** from the corresponding primary mesylate **6** proved to be surprisingly challenging. The use of trimethylstannyllithium alone or in combination with various metal additives invariably led either to the primary allylic stannane **8** or to mixtures of **7** and **8**. Although the most promising results were obtained with Cu-

(I) additives, the ratio of **7** to **8** varied widely depending on the additional ligands attached to copper in mixtures of CuI or CuBr \cdot SMe₂ with Me₃SnLi² and a third component in THF as solvent. Thus, ratios of **7** to **8** as a function of additive ligand were observed as follows: 2-thienyllithium, 1.2:1; triphenylphosphine, 1.5:1; 1,2,4-triazolyllithium, 4:1. The

⁽¹⁾ Radetich, B.; Corey, E. J. *J. Am. Chem. Soc.* **2002**, *124*, 2430.

^{(2) (}a) Still, W. C. *J. Am. Chem. Soc.* **1977**, *99*, 4836. (b) Still, W. C.; Mitra, A. *Tetrahedron Lett.* **1978**, 2659.

most selective reagent found was prepared from Me₃SnLi, CuI, and P(OMe)3, which gave in 75% yield a mixture of **7** and **8** in a ratio of 9 to 1. This proved to be satisfactory for subsequent coupling reactions, since the minor primary allylic stannane **8** is much less reactive than the secondary isomer **7**.

The secondary allylic stannane **7** underwent a clean thermal metallo-ene coupling reaction with a series of aldehydes to give in each case the *Z*-coupling product **9**, as summarized in Table 1. The reaction velocities for this series

paralleled the electrophilicity of the aldehyde component, as expected. The *Z*-geometry of the newly created olefinic linkage in the products shown in Table 1 was clear from ¹ H NMR NOE data including NOEs of ca. 12% between the olefinic CH_3 and H on the new double bond. $E, Z, E, -$ Geranylgeraniol (10) was readily synthesized from 9 , $R' =$ *E*-geranyl, by the selective deoxygenation protocol summarized in Scheme 3 for $12 \rightarrow 15$ ¹. The synthesis of 10

demonstrates an advantageous route to such mixed *E*/*Z* oligoprenol systems, several of which occur naturally in dolichol and bacterial and plant oligoprenols.3

The selective generation of *Z*-olefinic geometry in the products **9** is readily explained by comparison of the chairlike transition states **11a** (which would lead to the observed *Z* olefin) and **11b** (which would produce the disfavored *E* product). As indicated in Scheme 2, **11b** is destabilized relative to **11a** by steric repulsion between one of the methyls attached to Sn and the vicinal methylene group.

Although the reaction of the allylic stannane **7** with *E*-geranial in the presence of Lewis acids was expected to

produce the all-*E* coupling product **12**, in actuality it was complicated by the concomitant formation of the alternative primary-secondary coupling product **13**. The ratio of **12** to **13** varied widely with Lewis acid, solvent, and temperature, as can be seen from the following data for the ratio **12**:**13** as a function of reaction conditions: $3:2$ (BF₃ \cdot Et₂O, CH₂Cl₂, -78 °C); 1:4 (MeAlCl₂, CH₂Cl₂, -78 °C); 3:2 (BF₃ gas, toluene, -78 °C ; 1:4 (B(C₆F₅)₃, toluene, -78 °C); 7:3 (BF₃ \cdot Et₂O, toluene, -78 °C). The best conditions found for the preparation of 12 were 0.3 M 7, geranial, and BF_3 ⁺ Et_2O in toluene at -78 °C, which led to 12 in 55% isolated yield after silica gel chromatography. The synthesis of all-*E* geranylgeraniol (**15**) from **12** was carried out via the triisopropylsilyl (TIPS) ether **14** as outlined in Scheme 3.

Acknowledgment. We are grateful to Pfizer Inc. for generous research support.

Supporting Information Available: Experimental procedures for the compounds described, along with NMR, IR, and mass spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026568P

^{(3) (}a) Hemming, F. W. In *Biochemistry of Lipids*; Goodwin, T. W., Ed.; Butterworths: London, 1974; p. 39. (b) Poulter, C. D.; Rilling, H. D. *Acc.* Chem. Res. **1978**, *11*, 307.